

The Accuracy of Endoscopic Diagnosis of Intestinal Metaplasia Compared to Histopathological Diagnosis

Remzi Beştaş^{1*}, Tamer Yeğinaltay²

¹ Memorial Dicle Hospital, Department of Gastroenterology. Diyarbakır, Turkey ² Antalya Pathology Center, Antalya, Turkey

Article info	Abstract	Research Article
Received: 03.06.2020 Received in revised form: 21.07.2020 Accepted: 04.08.2020 Available online: 05.09.2020	Intestinal metaplasia (IM) is a common gastric lesion that is considered premal relationship between normal white light endoscopy and histopathological IM diagno endoscopic prevalence and histopathological confirmation rate in 229 suspected underwent elective esophagogastroduodenoscopy between October 2016 and Mi performed by the same clinical endoscopist. We analyzed and reviewed demographic	ignant. Our study aims to determine the ses. This retrospective study evaluated the I IM patients among 3247 patients who ay 2020. All endoscopic processes were data, endoscopic findings, and endoscopic
<u>Keywords</u> Intestinal metaplasia Histopathology Endoscopy Precancerous lesion	biopsy pathology results of all patients obtained from medical records. The endoscopic p was pathologically confirmed in 92.1% of the patients who were diagnosed with endor patients (57.2%) than in female patients. Of the IM patients, 59% were aged \geq 50 years, and 22.7% \geq 60-70 years. The incidence of Helicobacter pylori (H.pylori) was 40.2% intestinal metaplasia, which is a precancerous lesion, was in great agreement with his prevalence of endoscopic IM diagnosis was below that of histopathological diagno accurately by diligent and detailed endoscopic examination, particularly in older male pa	prevalence of IM was 7.02. IM diagnosis secopy. IM was more common in male s, whereas 5.2% were aged \ge 20-30 years %. The endoscopic diagnosis of gastric stopathological diagnosis. However, the osis. IM diagnosis can be made more atients.

INTRODUCTION

Gastric cancer is still the second most common cause of cancer death globally, despite the gradually reduced incidence in several developed countries¹. The development of gastric cancer is through a multi-stage pathway that starts with the chronic inflammation of the gastric mucosa caused by H. pvlori, multifocal atrophic gastritis, IM, dysplasia, and finally, invasive gastric adenocarcinoma^{2,3}. The prognosis of gastric cancer varies depending on its stage. The 5-year survival rate for advanced gastric cancer is less than 20%, while this rate is over 90-95% for early-stage gastric cancer ⁴ The risk of developing gastric cancer is closely associated with premalignant lesions, such as IM and AG⁵. Therefore, the early detection of these precancerous lesions plays a very important role in the prevention of gastric cancer development. Among many risk factors, H.pylori infection is considered to be the most important risk factor in the development of IM due to facilitating IM morphogenesis ^{6,7}.

Gastric IM is defined as the replacement of the foveolar, surface, and glandular epithelium of the gastric

mucosa with an intestine-like epithelium, which includes goblet cells, Paneth cells, and absorptive cells⁸. There are many studies reporting that AG and IM are the major precursor lesions for gastric cancer ^{6,7,9}. The prevalence of AG and IM varies from country to country but is relatively higher in countries with a high prevalence of H. pylori infections and gastric cancer ¹⁰.

Numerous studies support that endoscopic follow-up in patients with intestinal metaplasia and the early diagnosis of gastric cancer significantly reduce mortality¹¹. Despite being very practical, the endoscopic diagnosis of IM presents various difficulties. The chromoendoscopy and narrow-band imaging (NBI) modalities have a higher diagnostic yield compared the conventional white-light endoscopy (WLE), but are still inferior to histological diagnosis¹². Therefore, it is very important to understand the relationship between the endoscopic and histological IM findings. However, there are only a few studies concerning this subject¹³. This study aims to determine the endoscopic prevalence of IM, a premalignant gastric lesion, and the diagnostic compatibility of endoscopic and histopathological diagnosis.

MATERIALS and METHODS

Ethical approval

Alt başlık

There were a total of 3247 patients that presented to the gastroenterology outpatient clinic between October 2016 and May 2020 with various symptoms for which endoscopy was indicated, who gave written consent and underwent elective endoscopy. This retrospective study includes 229 of these 3247 patients that were endoscopically diagnosed with IM and underwent biopsy. Endoscopic findings of whitish swollen plaque-like mottled and lesions, patchy erythema, homogeneous nodular discolorations were evaluated to indicate intestinal metaplasia¹³. Demographic data and endoscopic and pathological findings of these patients were recorded. Patients that underwent biopsy for diagnoses other than the endoscopic definition of IM specified above (e.g. erosive/nonerosive gastritis, nodular gastritis, gastric ulcer, gastric cancer, polypoid lesions, gastric polyp) and were subsequently diagnosed with IM, gastric surgery patients, and patients with incomplete data were excluded from the study. Upper endoscopy was performed by the same experienced endoscopist in all patients after at least 8 hours of fasting and full sedation using a Fujinon endoscope. At least 3 biopsy samples were obtained from the gastric lesions that conformed with the endoscopic description mentioned above and fixed in 10% formalin. After routine examination procedures, the sections from the prepared paraffin blocks were stained with HE and evaluated for Hp (Giemsa staining), neutrophil infiltration. IM. atrophy. dysplasia, and other lesions. IM was histopathologically defined as the replacement of the glandular epithelium with an epithelium containing goblet cells. The biopsy samples of these patients were stained with PAS-Alcian Blue (pH 2.5) and High Iron Diamine-Alcian Blue (pH 2.5) combination stains: PAS to demonstrate neutral mucins, Alcian Blue for sialomucins, and High Iron Diamine for sulfomucins. IM was graded according to the following criteria. Mild (+) IM: < 1/3 of the surface area is involved; Moderate (++) IM: between 1/3 and 2/3 of the surface area is involved; Severe (+++) IM: > 2/3 of the surface area is involved¹⁴. The endoscopic prevalence of IM and its correlation with gender, age, and metaplasia severity were evaluated. The distribution

of IM was evaluated according to age groups (<50 years vs \geq 50 years; \geq 20-30 years, \geq 30-40 years, \geq 40-50 years, \geq 50-60 years, \geq 60-70 years, and \geq 70 years). The incidence of H. pylori was investigated. Hospital data usage permission was obtained for this study.

Statistical analysis

Data were analyzed using SPSS software version 21.0. The significance of the difference between the two groups was investigated using Pearson's chi-square test or Fisher's exact test for categorical variables and Student's t-test for continuous variables. A p-value < 0.05 was considered statistically significant.

RESULTS

The endoscopic prevalence of IM was 7.02. IM diagnosis was histopathologically confirmed in 211 (92.1%) of the 229 patients endoscopically diagnosed with IM. In the remaining 18 (7.9%) patients, endoscopic IM diagnosis was not confirmed histopathologically. The mean age of the patients included in the study was 53.79 ± 14.93 years (min-max 22-89). Of the patients who were diagnosed with IM, 98 (42.8%) were female and 131 (57.2%) were male; 94 (41%) were aged < 50 years and 135 (59%) were aged ≥ 50 years. The lowest number of IM cases was in the 20-30 age group with 12 patients (5.2%), and the highest in the 60-70 age group with 52 (22.7%). 92 patients (40.2%) tested positive for H. pylori. demographic Patients' data and endoscopic and histopathological IM findings are presented in Table 1 and the distribution of these findings according to age groups is presented in Table 2. The histopathological severity was +/3 in 56 patients (26.5%), ++/3 in 100 (47.4%), and +++/3 in 55 (26.1%). 155 (73.5%) of the patients that were endoscopically diagnosed with IM had moderate or severe histologic IM. Histopathological severity is presented in Figures 1a-c and endoscopic IM images are presented in Figures 2a-b.

DISCUSSION

Determining the prevalence of gastric IM in the general population is rather difficult due to the asymptomatic nature of the lesion. Histological examination is the gold standard for the diagnosis of AG and IM and is more sensitive and specific compared to endoscopic histologic assessment is dint among evaluators¹⁵

Table 1. Demographic, endoscopic, and histopathological IM data of the patients

Variables	
Age, year, mean±SD (min-max)	53.79±14.93 (22-89)
Female, n (%)	98 (% 42.8)
Male, n (%)	131 (% 57.2)
H.pylori positviti, n (%)	92 (%40.2)
Number of endoscopic IM, n (%)	229
Number of histologic IM, n (%)	211 (%92.1)
Degree of histological activity	56 (% 26 5)
+/3, n (%)	100(% 474)
++/3, n (%)	55 (%26 1)
+++/3, n (%)	55 (7020.1)

SD; standart deviation, n;number, IM; Intestinal metaplazi, H.pylori; Helicobacter pylori

Table 2. Distribution of IM according to age groups

Age groups	
< 50, n (%)	94 (% 41)
≥50, n (%)	135 (% 59)
≥20-30, n (%)	12 (% 5.2)
≥30-40, n (%)	31 (%13.5)
≥40-50, n (%)	51 (%22.3)
≥50-60, n (%)	46 (%20.1)
≥60-70, n (%)	52 (%22.7)
≥70, n (%)	37 (%16.2)

n; number

Figure 1. Histopathological intestinal metaplasia severity according to the Sydney System, A: There is intestinal metaplasia with broad stoplasma goblet cell-like structure, +/3 mild, B: There is an intestinal metaplasia that is stained open in a medium-density cell that fills some gland lumens, with a broad stoplasma goblet cell-like structure, ++/3 moderate, C: Severe atrophic gastritis and intestinal metaplasia with broad stoplasma goblet cell-like structure in which the gland epithelium is intensely stained, +++/3 severe.

Figure 2. Endoscopic images of intestinal metaplasia, A: Patchy erythematous lesions and mucosal irregularity, B: Whitish swollen plaque-like lesions.

Endoscopically, IM is usually observed as a mucosal nodular individuals and determined that Hp positivity was an important pattern that occurs after the development of AG. The factor in IM development²⁰. Another study reported the endoscopic diagnosis of severe AG and IM cases is not prevalence of H. Pylori to be 38.6% in gastric IM²¹. In our difficult. However, it may be difficult to diagnose mild AG and study, we determined the prevalence of H.pylori to be IM cases^{16,17}. Therefore, it is appropriate to perform a biopsy in 40.2% (n = 92). This rate is below the general H. pylori suspected AG and IM cases.

of intestinal metaplasia is high in patients with in gastric IM sites. H. pylori-positive gastritis^{6,18}. Ozden et al. investigated the prevalence of H. pylori infection in Turkey and found the rate years is an independent risk factor for IM and that the of H. pylori-positivity to be 81% for the general population¹⁹. incidence of IM increases with age^{3,22}. One study reported the In their study, Craanen et al. found Hp positivity in 73% of prevalence of IM to be 10% in individuals aged < 50 years and

prevalence and compatible seems to be with The prevalence of IM and gastric atrophy varies histopathologically diagnosed IM-positive patients. The low worldwide depending on H. pylori infections. The prevalence Hp positivity can be ascribed to the low prevalence of H. Pylori

Numerous studies have reported that being aged ≥ 50

32% in individuals aged \geq 50 and over²⁰. In our study, 41% of were consistent with those of the studies reporting a high consistent with those of previous studies.

prevalence of IM to be 28.5%²³, whereas a study from Korea examination duration and performing conventional WLE in indicated the histological prevalence of IM to be 28.6% and patients with highly suspected IM, particularly in male patients 21.2% in the antrum and corpus, respectively¹⁰. Two Korean aged \geq 50 years. multicenter studies from 2006 and 2011 indicated the endoscopic prevalence of IM as 7.1% and 12.5%, respectively, and that these rates were below histological diagnostic rates. Both studies reported a higher IM prevalence in males^{24,25}. Depending on the preferred diagnostic methods and countries, the prevalence of IM ranges from 7.1 to $42.5\%^{26-28}$. Although 1. endoscopy is the major diagnostic method for AG and IM, the sensitivity and specificity of endoscopic diagnoses are low with a considerable possibility of interobserver variance. Lim et al. reported the sensitivity and specificity of endoscopy to be low for the diagnosis of IM. Based on histology, the sensitivity and specificity of endoscopy in the diagnosis of IM were determined as 24.0% and 91.9% for the antrum and 24.2% and 88.0% for the corpus²⁹. In our study, all endoscopic examinations were performed by a single experienced endoscopist, thus eliminating intra-observer variation, and the prevalence of gastric IM was determined as 7.02%. The prevalence of IM was higher in males than in females. Our data are consistent with the previous studies.

The image quality of conventional endoscopes has significantly improved in recent years and typical endoscopic findings have been interpreted to indicate AG and IM. In the 6 meantime, different endoscopic modalities have been developed, such as magnification chromoendoscopy and narrow-band imaging (NBI), for the endoscopic diagnosis of 7. AG and IM 30-32. However, the examination of the entire stomach can be difficult and time consuming with NBI or ME. For this reason, a diligent and detailed WLE examination 8. should be performed first.

CONCLUSION

There are few studies on the high agreement between endoscopic and histological metaplasia diagnoses. Our results

our patients were aged < 50 years, and 59% were aged ≥ 50 agreement between the endoscopic and histopathological years. The age distribution analysis revealed the lowest number diagnosis of gastric intestinal metaplasia, a precancerous of IM cases to be in the 20-30 age group with 5.2% and the lesion. However, it should be kept in mind that, despite the highest in the 60-70 age group with 22.7%. Our results are high agreement, the diagnostic yield of endoscopy is still below that of histopathology for IM. The diagnostic yield of A study from Japan reported the histological endoscopy for IM can be improved with an adequate

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

- Katanoda K, Yako-Suketomo H. Comparison of time trends in stomach cancer incidence in Asia, from cancer inci-dence in five continents, Jpn J Clin Oncol 2009;39:71-72.
- Dinis-Ribeiro M, Lopes C, da Costa-Pereira A, et al. A follow up 2. model for patients with atrophic chronic gastritis and intestinal metaplasia. J Clin Pathol. 2004;57:177-82.
- Correa P. Human gastric carcinogenesis: a multistep and 3. multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992:52:6735-40.
 - Yuasa N, Nimura Y. Survival after surgical treatment of early gastric cancer, surgical techniques, and long-term survival. Langenbecks Arch Surg 2005;390:286-93.
 - de Vries A. C, van Grieken NCT, Looman CWN, et al, "Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands," Gastroenterology. 2008;134:945-52.
- Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001;345:784-89.
- Kim N, Park RY, Cho SI, et al. Helicobacter pylori infection and development of gastric cancer in Korea: long-term follow-up. J Clin Gastroenterol 2008;42: 448-54.
- de Vries AC, Kuipers EJ. Epidemiology of premalignant gastric lesions: implications for the development of screening and surveillance strategies. Helicobacter 2007;12:22-31.
- 9. Ohata H, Kitauchi S, Yoshimura N, et al. Progression of chronic atrophic gastritis associated with Helicobacter pylori infection increases risk of gastric cancer. Int J Cancer 2004;109:138-43.

- 10. Kim N, Park YS, Cho SI, et al. Prevalence and risk factors of 22. Hirota WK, Zuckerman MJ, D. Adler DG, et al. ASGE guideline: atrophic gastritis and intestinal metaplasia in a Korean popula-tion without significant gastroduodenal disease. Helicobacter 2008;13:245-55.
- 11. Zullo A, Hassan C, Romiti A, et al. Follow-up of intestinal 23. Asaka M, Sugiyama T, Nobuta A, et al. Atrophic gastritis and metaplasia in the stomach: when, how and why, WJG Oncology, 2012;4:30-36,
- Metaplasia as a Premalignant Lesion of Gastric Cancer, J Cancer Prev 2015;20:25-40
- intes-tinal metaplasia of stomach: accuracy judged by histology. Hepa-togastroenterology 1999;46:162-166.
- 14. Misiewicz JJ. The Sydney System: a new classification of gastritis. 26. Kim HJ, Choi BY, Byun TJ, et al. The prevalence of atrophic Introduction. J Gastroenterol Hepatol 1991;6:207-8.
- 15. el-Zimaity HM, Graham DY, al-Assi MT, et al. Interobserver varia-tion in the histopathological assessment of Helicobacter pylori gastritis. Hum Pathol 1996;27:35-41.
- 16. Eshmuratov A, Nah JC, Kim N, et al. The correlation of endoscopic and histological diagnosis of gastric atrophy. Dig Dis Sci 2010;55:1364-75.
- 17. Esposito G, Pimentel-Nunes P, Stefano Angeletti S, et al. Endoscopic Grading of Gastric Intestinal Metaplasia (EGGIM): A Multicenter Validation Study, Endoscopy, 2019;51(6):515-21.
- 18. Hwang YJ, Kim N, Lee HS, et al. Reversibility of Atrophic Gastritis and Intestinal Metaplasia After Helicobacter Pylori Eradication -A Prospective Study for Up to 10 Years Aliment Pharmacol Ther, 30. Kadowaki S, Tanaka K, Toyoda H, et al. Ease of early gastric 2018;47:380-90.
- 19. Ozden A, Dumlu S, Donderici O, "Seroepidemiology of Helicobacter pylori infection in our country "Gastroenterology, 1992;3:664-668.
- 20. Craanen, Dekker W, Blok P, et al. Intestinal metaplasia and Helicobacter pylori: an endoscopic bioptic study of the gastric antrum. Gut 1992; 33: 16-20.
- 21. Olmez S, Aslan M, Erten R, et al. The Prevalence of Gastric Intestinal Metaplasia and Distribution of Helicobacter pylori Infection, Atrophy, Dysplasia, and Cancer in Its Subtypes Gastroenterol Res Pract.Volume 2015; 434039, 6p

- The role of endoscopy in the surveillance of premalignant conditions of the upper GI tract," *Gastrointestinal Endoscopy*, 2006;63:570-80,.
- intestinal metaplasia in Japan: results of a large multicenter study. Helicobacter 2001;6:294-299.
- 12. Park YH, Kim N, Review of Atrophic Gastritis and Intestinal 24. Park HK, Kim N, Lee SW, et al. The Distribution of Endoscopic Gastritis in 25,536 Heath Check-up Subjects in Korea. Korean J Helicobacter Up Gastrointest Res 2012;12:237-43.
- 13. Lin BR, Shun CT, Wang TH, et al. Endoscopic diagnosis of 25. Joo YE, Park HK, Myung DS, et al. Prevalence and risk factors of atrophic gastritis and intestinal metaplasia: a nationwide multicenter prospective study in Korea. Gut Liver 2013;7:303-10.
 - gastritis and intestinal metaplasia according to gender, age and Helicobacter pylori infection in a rural population. J Prev Med Public Health 2008;41:373-79.
 - 27. Eriksson NK, Kärkkäinen PA, Färkkilä MA, et al. Prevalence and distribution of gastric intestinal metaplasia and its subtypes. Dig Liver Dis 2008;40:355-60.
 - 28. Almouradi T, Hiatt T, Attar B. Gastric Intestinal Metaplasia in an Underserved Population in the USA: Prevalence, Epidemiologic and Clinical Features. Gastroenterol Res Pract. 2013; 856256.
 - 29. Lim JH, Kim N, Lee HS, et al. Correlation between Endoscopic and Histological Diagnoses of Gastric Intestinal Metaplasia. Gut Liver 2013;7:41-50.
 - cancer demarcation recognition: a comparison of four magnifying endoscopy methods. J Gastroenterol Hepatol. 2009;24:1625-30.
 - 31. Capelle LG, Haringsma J, de Vries AC, et al. Narrow band imaging for the detection of gastric intestinal metaplasia and dysplasia during surveillance endoscopy. Dig Dis Sci 2010;55:3442-48.
 - 32. S Sobrino-Cossío S, Francis JMA, Emura F, et al. Efficacy of Narrow-Band Imaging for Detecting Intestinal Metaplasia in Adult Patients With Symptoms of Dyspepsia. Rev Gastroenterol Mex. 2018;83:245-52.